Stellate neurons mediate functional hyperemia in the cerebellar molecular layer.

نویسندگان

  • G Yang
  • J M Huard
  • A J Beitz
  • M E Ross
  • C Iadecola
چکیده

Mice lacking cyclin D2 have a profound reduction in the number of stellate neurons in the cerebellar molecular layer. We used cyclin D2-null mice to study the contribution of stellate neurons in the increase of cerebellar blood flow (BFcrb) produced by neural activation. Crus II, a region of the cerebellar cortex that receives trigeminal sensory afferents, was activated by stimulation of the upper lip (5-30 V; 10 Hz), and BFcrb was recorded at the activated site by the use of a laser-Doppler flow probe. In wild-type mice, upper lip stimulation increased BFcrb in crus II by 32 +/- 2%. The rise in BFcrb was attenuated by 19% in heterozygous mice and by 69% in homozygous mice. In contrast to the cerebellum, the increases in somatosensory cortex blood flow produced by upper lip stimulation was not attenuated in D2-null mice. The field potentials evoked in crus II by upper lip stimulation did not differ between wild-type and D2-null mice. Stellate neurons are a major source of nitric oxide (NO) in the cerebellar molecular layer. The neuronal NO synthase inhibitor 7-nitroindazole attenuated the vascular response to crus II activation in wild-type mice but not in D2-null mice, suggesting that stellate neurons are the major source of NO mediating the vascular response. The data provide evidence that stellate neurons are a critical link between neural activity and blood flow in the activated cerebellum and that NO is the principal effector of their vascular actions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glutamatergic Control of Microvascular Tone by Distinct GABA Neurons in the Cerebellum.

The tight coupling between increased neuronal activity and local cerebral blood flow, known as functional hyperemia, is essential for normal brain function. However, its cellular and molecular mechanisms remain poorly understood. In the cerebellum, functional hyperemia depends almost exclusively on nitric oxide (NO). Here, we investigated the role of different neuronal populations in the contro...

متن کامل

Immunohistochemistry of GluR1 subunits of AMPA receptors of rat cerebellar nerve cells.

The localization of GluR1 subunits of ionotropic glutamate receptors in the glial cells and inhibitory neurons of cerebellar cortex and their association with the climbing and parallel fibers, and basket cell axons were studied. Samples of P14 and P21 rat cerebellar cortex were exposed to a specific antibody against GluR1 subunit(s) ofAMPA receptors and were examined with confocal laser scannin...

متن کامل

Cerebellar vascular and synaptic responses in normal mice and in transgenics with Purkinje cell dysfunction.

We used transgenic mice with Purkinje cell dysfunction (PO3 line) to study the role of these neurons in the increase in cerebellar blood flow (BFcrb) produced by stimulation of the cerebellar parallel fibers (PF). Mice (age 8-10 wk) were anesthetized (halothane) and artificially ventilated. Arterial pressure and end-tidal CO2 were monitored continuously. Arterial blood gases were measured. The ...

متن کامل

GENETICS AND CELL BIOLOGY Ethanol Increases GABAergic Transmission and Excitability in Cerebellar Molecular Layer Interneurons from GAD67-GFP Knock-in Mice

Aims: This study assessed the acute effect of ethanol on GABAergic transmission at molecular layer interneurons (MLIs; i.e. basket and stellate cells) in the cerebellar cortex. The actions of ethanol on spontaneous firing of these pacemaker neurons were also measured. Methods: Transgenic mice (glutamic acid-decarboxylase 67-green fluorescent protein knock-in mice) that express green fluorescenc...

متن کامل

Ethanol increases GABAergic transmission and excitability in cerebellar molecular layer interneurons from GAD67-GFP knock-in mice.

AIMS This study assessed the acute effect of ethanol on GABAergic transmission at molecular layer interneurons (MLIs; i.e. basket and stellate cells) in the cerebellar cortex. The actions of ethanol on spontaneous firing of these pacemaker neurons were also measured. METHODS Transgenic mice (glutamic acid-decarboxylase 67-green fluorescent protein knock-in mice) that express green fluorescenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 20 18  شماره 

صفحات  -

تاریخ انتشار 2000